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Abstract-Galerkin representations for the displacement vector, polarization vector and the potential field are
obtained by elementary matrix inversions of the equations of equilibrium, Matrices of fundamental solutions
of an infinite elastic dielectric continuum subjected to a concentrated body force, an electric force, and a
charge density, are constructed. Theorems are proved on the discontinuity of double layer potentials and R,
M, Y operators of single layer potentials. By means of these theorems, the solution of the two basic boundary
value problems has been reduced to the solution of a system of seven singular integral equations.

1. INTRODUCTION

Recent research work by Mindlin [1, 2] in linear elastic dielectrics includes the polarization
gradient in the stored energy density function and is intended to bring together the classical
theory of piezoelectricity and Toupin's [3] equations of elastic dielectrics. This extension
accommodates several observed phenomena otherwise not included: an electro-mechanical
interaction in isotropic centro-symmetric and non-symmetric materials, surface energy of
deformation and polarization, capacitance of thin dielectric films, acoustical activity and optical
activity when the magnetic field is also included. The polarization gradient supplies terms found
in long wave limits of finite difference equations of lattice theories of crystals [1].

The solutions to the equilibrium equations of the Mindlin theory of linear elastic dielectrics
with polarization gradient in terms of functions analogous to Papkovitch-type functions of
classical elasticity have been constructed by Schwarz [4]. The solution is then employed to solve
the problem of a concentrated force applied at a point in an infinite elastic dielectric continuum.

Singular integral equations of coupled thermoelasticity have been obtained by Ignaczak and
Nowacki [11], of classical elasticity by Kupradze [5], and of micropolar thermo-elasticity by
Shanker [10].

In this paper, by an elementary matrix inversion of equations of equilibrium of linear elastic
dielectrics with polarization gradient, we obtain Galerkin representations for the displacement
vector, polarization vector and the potential of the Maxwell field. In Section 4, the matrices of
fundamental solutions of an unbounded isotropic elastic dielectric continuum, subjected to a
concentrated body force, electric force and charge density are constructed. As in Kelvin's
solution of classical elasticity, these singularities are found to be of order IIr. In Section 5, the
surface potentials of single and double layer are introduced and discontinuity theorems of the
double layer potentials and R, M, Y operators of single layer potentials are stated and proved for
Holder class of density functions. Furthermore, these theorems have been utilized to formulate the
first two basic boundary value problems of linear elastic dielectrics in the form of a system of seven
singular integral equations. The symbolic determinant for the first interiorboundary value problem is
found to be non-zero. It is concluded that the system can be regularized and can thus be solved for the
density functions.
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2. THE BASIC EQUATIONS

Let a homogeneous isotropic elastic dielectric occupy a region V in a rectangular Cartesian
coordinate system whose boundary S separates it from an outer vacuum V'.

The basic equations developed in [2] reduce to the equations of equilibrium,

Tij.i +Ii =0, (2.1 )

cf>.ii =Oin V' (2.2)

the kinematic relations,

the constitutive laws,

- Ej = aPj

Eij = b128ijPk.k + (b•• + bn)Pj.i + (b.. - bn)Pi.j + d128ijSkk + 2d"Sij + bo8'i

Tij = Iii = d128ijPk.k + d..(Pj.i + Pi.j ) + C 128ijSkk + 2c"Sij

and the boundary conditions,

n'[Pi - collcf>.d/l = 8(x)

(2.3)

(2.4)

(2.5)

in which we use the following notations: Tij-the stress tensor components, Eij-the electric
tensor components, S,j-the strain tensor components, ui-the components of the displacement
vector, Pi-the components of a polarization vector, Pi.j-the components of polarization
gradient tensor, E.-the components of the local electric force vector, Ei

MS -the components of
the Maxwell self-field vector, j;-the components of external body force vector, ni-the
components of the unit outward normal vector, cf>-the potential of the Maxwell field,
11cf>.dl-jump in cf>.i across S, k1(x), Si(X), 8i(x)-the surface loadings, Eo-the permittivity of
vacuum, pc-the charge density and a, b12, b.., bn , C 12, C'4, d12, d.. are material constants.

From Eqns. (2.1-2.5), eliminating Ej, Eij and Tij, the following system of basic equations are
obtained

[C..V2+(C12+ c..)VV.]ii + [d••V2+ (d12 + d..)VV.]15= -1,
[d44V2+ (d12 + d44)VV.]ii + [(b 44 + bn )V2 + (b 12 + b.. - bn)VV.]15 - Vcf> - a15 = - Eo

V.15 - EoV
2 cf> = -pc in V, V2 cf> = 0 in V' (2.6)

together with boundary conditions in the form

K(c)ii + Kld}15 = R(ii,15) = fIx}

K(d)ii + Kib)15 - b77n x V x 15 + bon = M(ii,15) = SiX)

n.[15 - EoIIVcf>11J = Y(15,cf» = Blx )

(2.7)
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where R, M, Y and K,x) are the surface operators and

K(x) =: xdiV. +2x44n.V +x44n x Vx x=: b,c,d.

3. GALERKIN'S REPRESENTATION

Let
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(3.1)

and L be the matrix associated with the system (2.6). It is clear that the system (2.6) is equivalent
to the matrix equation

where

[

c.UqI + (c - c«)Z d«qI +(d - d44)Z
L = d44qI +(d - d44)Z qzI +(b - b44- bn)Z

if X'
o ]-X

-Eoq

(3.2)

(3.3)

whc« • and P stand im the column vectors [::] and Ui] «spectively, the matrices I, X, Z

are defined by

and the superscript t over a matrix denotes its transpose. Making use of the results

ZX=qX Z2=qZ X'X=:q XX' =Z X'Z = qX'

the inverse of L is found to be

-q2qAJ +A3Z d44qAtl- A4Z dX
q2A1Az qA,Az qA,

L -1= d44qZA1I - qA4Z -c44qA1I+AsZ eX
q'iA1Az qAtAz qAl

dqAzX' cAzX' (be - d2)q - ac
q 2AtAz qA,Az qA 1

(3.4)

(3.5)

(3.6)
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Ll i = c(1 + foa)+ fo(d 2- bc)q

Ll2 = d;4q - C44q2

Ll, = (1 + foa - fobq )Ll2+ q2LlI

Ll4 = d44Ll I - fod Ll2

(3.7)

It is clear that Lli(i = 1,2,4,5) are linear and Ll3 is a quadratic in q.
From Eqns. (3.2-3.7) one obtains the representations

u= -q2V
2Ll t<l>1 +Ll,VV.<I>, + d44Ll,V2<1>2 - Ll4VV.<I>2 - dV'I'

P = d44Ll tV
4<1>t - Ll4V2VV.<I>1 - c44Ll tV

2<1>2 + LlsVV.<I>2 + cV'I'

</> = d Ll2V2V.<I>I - CLl2V.<I>2 + [(bc - d2)V2- ac]'I'

where <l>t, <1>2 and 'I' satisfy the equations

Ll l Ll2V4<1> I =-f
Ll t Ll2V2<1>2 = - Eo

Ll i V2'1' = - pc.

4. MATRICES OF FUNDAMENTAL SOLUTIONS

(3.8)

0.9)

(a) Concentrated force
Let 41Tep be a concentrated force applied at the point Y(Y"Y2,Y3) of an unbounded isotropic

elastic dielectric. Here ep is a unit vector along the Xp -direction of the Cartesian coordinate
system. Then

(4.1)

By standard methods [8], the solution of the system (3.9) is, given by

(4.2)

where

(4.3)

Let Ffp(x,y), FOP(X,y) and FX P denote, respectively, the displacement vector, the polarization



Singular integral equations in elastic dielectrics 179

vector and the potential of the Maxwell field corresponding to he above concentrated force.
Substituting (4.2) into (3.8), one obtains the fundamental matrix solutions,

r p - 1 [a-A2e
i
a,r]" a

2
{(1+afo a)r

P j - 2 2 Ujp +-- --2-2 --2-2 -
a2 82 r axjaxp al 81 a2 82 2

+ 81-2al-4A1(ei",r -1) ~ 82-2a2-4A2(eia,r -1)}.

p _ d44 ei",r a2 { d44 ei",r -1 fod ei"l r - 1}
pOj - 72- 8 pj - -- - -2-2---+-2-2--- ,

U2 r axjaxp a2 82 r al 81 r

(b) Concentrated electric force
Let 41Tep be a concentrated electric force acting at the point y. Then

The solution of the system (3.9) is given by

'It ;= o.

Substituting from (4.6) into (3.8), one obtains the fundamental matrix solutions

c a [ei",r -1J
HXp ;= a/8/ ax

p
--r-'

(c) Concentrated charge
Let 41T8(x - y) be the concentrated charge acting at the point y. Then

f;= 0, E;= 0, pc;= 41T8(x - y).

The solution of the system (3.9), in this case, is given by

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Substituting from (4.9) into (3.8), one obtains the singular solutions

(4.10)

5. DIELECTRIC POTENTIALS

As in ordinary potential theory and the potentials of Kupradze[5) in elastQkinetics, we
introduce

Potentials of single layer:

Uj(X ; 'if\ 'if2, v) = 2~ i [Fft (x,y)'It/(y) +FO{(X,y )'I'/(y) +FXj(X,y)v(y)J dsy

~(x; 'ift, 'if2,V) =2~ i [Hft (x,y )'I'/(y) +HOt (X,y )'I'/(y) + HXj(X,y )v(y)] dsy

-I -2 1 f 1 2S(x; 'I' ,'I' ,v} = 211' s [cfj(x,y)'I'dY) + cOj(x,y )'I'j (y) + cX(x,y )v(y)J ds y•

Potentials of double layer:

Up (x ; j(1,J(2,f.t) = 2~ i [Rj(Ff",FOP)K/(y) +Mj(FfP,FOP)K/(y) + Y(FOP,FX)f.t(y)J dsv

Wp(x; j(1,j(2,f.t} = 2~ i [Rj(HfP,HOP)K/(y) +Mj(HfP,HOP)Kj2(y} + Y(HW,HX)f.t(y)J dsv

~ -I -2 1 f I 2S(x; K ,K ,f.t) = 211' s [R;(ef,eO)KdY) +Mj(cf,cO)Kj (y) + Y(eO,cX )f.t(Y)] ds y•

(5.n

(5.2)

Throughout the rest of the paper H(y) and C stand, respectively, for HOlder class with
exponent y and a class of continuous functions. A Lyapunov surface is defined as a closed
surface S with a continuously turning tangent plane; E denotes the entire space.

Now the following theorems concerning the continuity of the above potentials are proved.
Theorem 1. For density functions 'if\y },'if2(y) and v(y) E C, the single layer potentials

U(x;'ift,'if2,v), W(x;'if\'if2,v) and S(x;'if\'ifz,v) are continuous for x EE.
It is clear that U(x; 'if\ 'if2, v}, W(x; 'ifl, 'if2, v) and S(x; 'if\ 'if2, v), as given by Eqn (5.0

exist and are continuous for all points in space except possibly points on the surface S.
Expanding exponentials in appropriate series in the kernels FfP, FOP, FXp; HP, flW, flXp; < f.

cO, eX, one obtains
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"p 1 [fOC C44J 1 [foe e44J Br dr "
HUj =--2 <12+0 8jp +-2 ~2-~2 --+O(r ),n~O

r Ul U2 r UI U2 dXj dXp

eC= -~ :: +O(r"), n ~O
J

8/1 O( n) 0eX = -- - + r , n ~fo r .
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(5.3)

and hence, it is obvious that U, Wand S exist and are continuous for points on S as well.
Theorem 2. For density functions i( l(y), i(2(y), p., (y) E H ('Y) and S a Lyapunov surface, the

double layer potentials Up(X;i(\i(2,p.,), Wp(X;i(I,i(2,p.,) and S(X;i(\i(2,p.,) tend to the
foIlowing finite limits as x tends to Xo E S from inside and from outside,

[Up (x; i(\i(2,p.,)];.. = ± K p
l +,l-f [Rj(pfP,pfiP)K/(y) +Mj(pfP,pfiP)K/(y)

... 7T s

+ Y(FfiP,PX)p.,(y)] ds y

[Wp(x; i(l, i(2,p.,)Le = ± K/+-
2
1 1[Rj(HfP,HUP)K/(y) +Mj(HfP,HfnK/(y)
7T s

where i,+ and e,- correspond respectively to the limits from interior and exterior of S and the
integrals are imagined in the sense of Cauchy's Principal values.

The expressions for the double layer potentials can be written in the forms

Up (x ; i(1,i(2,p.,) = ~J{Rj(pfP,pfiP)[K/(y) - K/(xo)] +~(pfP,pUP)[K/(y) - Kj\xo)]} ds y

+ K;~o) i Rj(pfP,pfiP) ds y + K~~o)JMJpfP,pfiP) dsy

+2~JY(pUP,pX)p.,(y) ds y (5.5)
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(5.7)

(5.6)

Wp (X; j(lj(2,1J-) = 2~r{Rj(HfP,H!}P)[K/(y) - K/(xo)] +Mj (HfP,HflP)[Kj
2(y) - Kj

2(xo)]} ds,.

+K
2
/(Xo) r Rj(HfP,HflPldSv+K(xo)f Mj(FfP,FflP)dsv

17' J.. ....1T \

+ 2~ LY(HflP,HX)IJ-(y) dsy

sex; j(I,j(2,1J-) = 2~r[Rj(eLfl)K/(y) +Mj(ef,cfl)K/] dsy +2~ LY(cfl,,·X)

IJ- (Xo) r
X [IJ- (y) - IJ- (Xo)] dsy + 27T J, Y (, fl,cX) dsy

where the expressions for R(xf,xfl), M(xf,xfl), YCfl.xX)(x = F,H,c), after the exponentials are
expanded in the appropriate series, are given by

R ( f p OP _ 1] f (- 3 ar ar ar n-I
j F ,FH) - 2 Jjp r, n) - 2 -a -a -a +OCr ), n :;. 0

r r n Xj Xp

M( f p OP) f3 f ( -) 2b77d44 (ar ar) n-I
j F ,FH = -2Jjp r,n -~ nj -

a
- np- +O(r ), n 2:0

r U2 r Xp aXj

Y(FflP,FX) = 0(r n
-

1
), n 2: 0

Rj(H fP,HilP) = \ hp (r,n) + O(r n
-

I
), n 2: 0

r

Y(HflP,HX) = O(r n -I), n 2: 0

R(cf,cil) = O(r n
-'), M(J,cfl) = 0(rn1

), n 2: 0

Y( 0 01
2

iJr O( n-I) 0cH,eX) = -~ - + r , n 2:
r an

and where

~ iJr iJr iJr iJr iJr iJr
!jp(r,n)=-nj-a-+np-

a
+Ojp-a -3-

a
-a -a

Xp Xj n n Xj Xp

(5.8)

(5.9)

The first and the fourth surface integrals in (5.5 and 5.6) and the second and the first surface
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integrals in (5.7) are continuous as x tends to Xo E S, since K1(y), K2
(y) and /L(y) E H(y) and the

quantities Y(p!Y,pX), Y(HW,HX), Rj(cr,c!l) and Mj(cf.c!l) have a singularity of order 1/r. The
limit of the second and the third surface integrals (5.5 and 5.6) and the third surface integral in
(5.7) are given by

where X == F, Hand

(5.10)

where u(xo;€) is the surface of a sphere with centre at Xo and radius € which indents or is
superimposed on the domain D bounded by surface S, accordingly as the point x approaches the
point xo E S from the interior or the exterior of the domain and thus isolates the point of singularity
xo.

For a point y E u(xo;€), we take the direction of the outward normal at y to s :+ u(xo;€) as
positive and

[nYl ==:+.!!..
J I,e aYi' (5,11 )

Making use of the above convention, Eqns (5.8) approach the following finite limits at y E u(xo;€).

(5.12)

Now, making use of (5.11) and the following results

(5.13)
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in (5.10), one finds that
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~i~, [J R'Y)(pfAl) dSvL = LR(Y'(pfAl)(xo,y) dSv± 21T

!~~JI M(Y)(pf,pf!) dsyL = JM(Y)(pf,pf!)(xo,y) ds,.

!~~, [L R("(Hf,Hf!) dsyL = LR'Y'(Hf,Hf!)(XO,y) ds y

!~~,[l M(Y)(Hf,Hf!)ds,l= f M,y'(Hf,H!1)(xo,y)ds,±21T

~i~, [f Y(Y)C!1,cX) dS1e = Jy<v'C!1"X)ds y ±21To,2. (5.14)

From (5.14) and the limits of both sides of (5.5), one obtains the results (5.4).
Theorem 3. For density functions \ir\y), \ir2(y), v(y) E H('Y) and S a Lyapunov surface, the

application of R, M and Y operators on potentials of single layer results in functions which tend
to the following finite limits as x approaches Xo E S from inside and outside.

[R (U, W)]i.e = ±\f!'(xo) +2~rR(Xo)[I'T(xo,y )\f!'(y) + p!1(xo,y l'lr2(y)

+ pX(XO,y)V(y),Hf(XO,y)\f!'(y) + H!1(Xo,y)\ir2(y) + HX(XO,y)v(y)] dsy

[M(U, W));.e = ±\ir2(xo) +-f- J M(xo![pf(xo,y)\irl(y)+ p!1(xo,y)\f!2(y) (5.15)
_1T •

+pX(xo,y )v(y ),H f(xo,y )\}i'(y) +H!1(XO,y )\f!2(y) + HX(XO,y )v(y)] dsy

[Y(W,S)],.e = ±Oi2V (Y) +2~ r y'Xo)[Hf(XO,y)\f!'(y) +H!1(XO,y)\f!2(y)

+HX(XO,y )v(y ),cf(xo,y )\f!l(y) + c!1(xo,y )\f!\y) + cX(xo,y )v(y)] dsy

where the integrals are to be understood in the sense of Cauchy's Principal values.
The expansions of exponential terms in singular kernel matrices R(xf,x!1 vXX), M(S>X!1,xX),

Y(S,x!1,xX)X = F, H, C have been given in Theorem 2. Keeping in mind that for x'i yES, the
product of linear operators at the points x and y, operating on a function is commutative, the results
(5.15) can be proved following the procedure of Theorem 2.

o. SINGULAR INTEGRAL EQUATIONS

For the first interior and exterior boundary value problem of linear elastic dielectrics, we seek
the solution of (2.6) as double layer potentials (5.2) such that for xES, the displacement vector,
the polarization vector and the potential of Maxwell field are prescribed functions Ui•., Pi.e and
<l>i.e E H('Y) respectively.

For the second interior and exterior boundary value problem, we seek solution of (2.6) as
single layer potentials (5.1) such that for XES, the stress vector niTij , the electric force vector
n,Eij and ni [-foll<fJrll +P,] are prescribed functions k(x )i.e. Sex )i.e and o(x);.. E H( 'Y ) respectively.

Using the discontinuity theorems of surface potentials proved in Section 5, the singular integral
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equations for the fundamental boundary value problems, involving unknown density functions
'1f1('11'11,'I'2

1,'I'3 \ '1f\'I' ,2,'I'/,'I'/) ,II and J.(I(K,I ,K/ ,K3
1), J.(2(K/,K/,K/),p., may be written in the

following form:

Kpl(x) ± 2~ f, [R/')(FfP,FfY)K/(y) +M/')(FfP,FOP)K/(y) + Y(Y)(FW'FX)p.,(y)] ds y = [UpL

K/(x) ± 2~ f, [R/Y)(HfP,HOP)K/(y) +M/'\HfP,HW)K/(y) + Y(Y)(HOP,HX)p.,(y)] ds y = [Pp]i.e

8,2p.,(X) ± 2~ i R(Y)(cf,cO)K/(y) +M(Y)(cf,cn)K/(y) + Y(Y\cO,cX)p.,(y) dsy = ±[I,b],.e (6.1)

and

'1f\x) ± 2~ i R(y)[(Ff(X,y )'1fl(y) +FO(X,y )'1t2(y) +FX(X,y )lI(Y ),H f(x,y )'1f'(y) +HO(X,y )'1f2(y)

+ HX(X,y)lI(y))] dsy =±[k(xn.e (6.2)

'1f\X)±2~ JM(YlFf(X,y)'1t'(y) +FO(X,y)'1f2(y) +FX(X,y)lI(y),Hf(X,y)'1f I(y) +HO(X,y)'1f2(y)

+ HX(X,y)lI(y)] dsy = ±[S(xn.e

81
211(x) ± 2~ f, y(y)[H f(x,y )'1f\y) +HO(X,y )'1f2(y) +HX(X,y )lI(Y ),c f(x,y )'1f1 + c O(x,Y )'1f2(x)

+ cX(x,y)lI(y)] dsy = ±(O(X)l<,e.

Further, we investigate the symbolic determinant [7] of the system of seven equations (6.1) in the
seven unknown density functions K/, K/, K/, K,2, K/, K/, p.,(y). Keeping in mind that the
particular choice of coordinates will not alter the singularities of the involved kernels, we
introduce local coordinates at each point xES directing xraxis along the outside normal to S
and the h X2 axes in the tangent plane to S. Expanding the kernels and noting that in the local
coordinate system n, = 0, n2 = 0, n3 = 1, we represent the system (6.1) for the first interior
boundary value problem in the form:

K 2() 1 f I (I 2 I 2 - -
3 x +-2 2[~K, -?,KI)COSO+(~K2 -?IK2)sinO]dsy+L6(KI,K2,p.,)=[P3]'

1r s r

8,2p.,(X) + L 7(K"J.(2,p.,) = [<$], (6.3)
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() ar. ar f3 2b77 (dcos =-:;-, sm () = -:;-, ( ,,~,) = -(f3,O + --;;-T 44,e44)
uy, uy~ u~

and L k (k = 1,2, ... ,7) are integral operators with weak singularities.
The symbolic determinant of the system (6.3) is given by

1 0 -i'Yj cos () 0 0 if3, cos () 0
0 1 -i'Yj sin () 0 0 if3, sin () 0

i'Yj cos () i'Yj sin () 1 -if3! cos () -if3, sin () 0 0
~= 0 0 -ig cos () 1 0 i~, cos () 0

0 0 -ig sin () 0 1 i~l sin () 0
ig cos () ig sin () 0 -i~! cos () -i~, sin () 1 0

0 0 0 0 0 0 8,'

= 8,2(1- 'Yj2)(1- ~!2) "f O.

The non-vanishing of the symbolic determinant gives the sufficient condition [7] for the
regularization of the system of singular integral equations. The system can thus be solved for the
density functions. The symbolic determinant for the other system of equations may also be
shown to be non-zero in a similar manner.
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